LSH Ensemble: Internet-Scale Domain Search

Erkang (Eric) Zhu⁺, Fatemah Nargesian⁺, Ken Q. Pu^{*}, Renée J. Miller⁺

+ University of Toronto * University of Ontario Institute of Technology

Alice, a data scientist, wishes to understand the factors affecting companies' funding to the universities.

Scenario 1: she has the two tables at hand.

Solution 1: join the two tables on the Industry Partners and Company columns.

	Industry Partners	Provin ce	Grant Amount
	NVIDIA	Ontario	
→	Imperial Oil Ltd	Alberta	
	Hydro-Qubec	Quebe c	

_ 1				
	Company	CRA Tax ID	Revenu e	
	NVIDIA	C0112		
-	Imperial Oil Ltd	C1234		
	IBM Canada Ltd	C5678		

Scenario 2: she has only one table, and a **repository** of MANY tables - manual inspection is not preferred.

Industry Partners	Provin ce	Grant Amount
NVIDIA	Ontario	
Imperial Oil Ltd	Alberta	
Hydro-Qubec	Quebe c	

Solution 2: requires a search engine for relevant datasets.

An Internet of Data

Examples of Open Data (Early 2016)

Number of Datasets by Country

What is a reasonable objective for searching datasets?

Domain Search

Domain: a set of values in a dataset (e.g. a column in a table)

Domain Search: given a query domain Q and **threshold t***, find all domains **X** such that **Containment(Q, X)** is greater than **t***.

$$Containment(Q, X) = \frac{|Q \cap X|}{|Q|}$$

Approximate Domain Search

We borrow an insight from Approximate Nearest-Neighbour Search.

Existing Solution

MinHash LSH [Broder 97, Indyk 98] is a search index for Jaccard.

$$\operatorname{Jaccard}(Q, X) = \frac{|Q \cap X|}{|Q \cup X|}$$

- Can be tuned for Jaccard threshold
- Constant space requirement for all domain sizes
- Biased against large domains

Existing Solution

Asymmetric MinHash LSH is a search index for containment [Shrivastava 15].

Existing Solution

Asymmetric MinHash LSH is a search index for containment [Shrivastava 15].

- Difficult to tune for containment threshold
- Padding reduces MinHash accuracy, especially when domain sizes have a skewed distribution

Research Gap: we need an index for containment search that maintains high accuracy on **skewed** domain size distribution and is tunable for containment **threshold**.

LSH Ensemble

(Our Contribution)

Can we use MinHash LSH for containment search without padding?

$$\operatorname{Jaccard}(Q,X) = \frac{\operatorname{Containment}(Q,X)}{\frac{|X|}{|Q|} + 1 - \operatorname{Containment}(Q,X)}$$

$$s_u^* = \frac{t^*}{\frac{u}{|Q|} + 1 - t^*}$$

The new threshold introduces

- false positive domains
- no false negative domains

The query cost can reduced if we produce less false positive domains.

Tight upper bound for number of false positives in range **[I, u]**

We can reduce the range size to reduce the number of false positives domains.

Tight upper bound for number of false positives in range **[I, u]**

Sorted by domain size

[l, u)

Contiguous domain partitions

Query cost is determined by the partition with the most false positive domains

This led us to formulate an **optimization problem** for partitioning using the upper bound of $N_{I,u}^{FP}$ on each partition.

$$\Pi^* = \arg \min_{\Pi} \max_{1 \le i \le n} M_i$$
$$M_i = N_{l_i, u_i} \cdot \frac{u - l + 1}{2u}$$

This is equivalent to finding a partitioning such that all partitions have the same M_i .

$$\exists \Pi^* \ s.t. \ M_i = M_j, \ \forall \ i, j$$

So far, we have shown:

- 1. Partitioning improves query cost by reducing false positives, while maintaining accuracy
- 2. An optimal partitioning can be verified using a closed form equation

An optimal partitioning for a real-world domain size distribution?

We proved **equi-depth** partitioning is optimal for domains following **power-law** distribution

One last thing: **tune** MinHash LSH for containment threshold

MinHash LSH [Indyk 98]

We derived the probability of returning with respect to containment given parameters **b** and **r**

Our goal is to minimize the **sum** of false positive and negative probabilities

Experimental Result

Compared against Asym MinHash [Shrivastava 2015] and MinHash LSH (using our Containment-to-Jaccard conversion) on accuracy, using Canadian Open Data (65,533 domains):

- LSH Ensemble consistently out-performs other techniques
- More partitions leads to higher accuracy before pruning false positives

Performance experiment used the complete 2015 WDC English Relational Web Table corpora (263 million domains):

- Mean query time around 3 seconds at 32 partitions
- More partitions leads to lower query cost

Accuracy vs. Threshold

(Before Pruning)

- Creating more partition leads to fewer false positives, while maintaining recall
- Asymmetric MinHash LSH [Shrivastava 15] has high precision, but low recall due to padding

Accuracy vs. Skewness

(Before Pruning)

- Skewness in domain sizes have negative impact on accuracy for all indices
- LSH Ensemble handles skewness better than others

Query Performance

	Mean Query (sec)	Precision Before Pruning (t*=0.5)
MinHash LSH	45.13	0.27
LSH Ensemble (8)	7.55	0.48
LSH Ensemble (16)	4.26	0.53
LSH Ensemble (32)	3.12	0.58

On 263 million domains (WDC Web Table)

Speed up is due to:

- Fewer false positive domains to process (higher precision)
- Parallelization

Recap

LSH Ensemble

- Uses multiple MinHash LSH built on domain size partitions to approximate containment search and maintain accuracy
- Optimal partitioning (equi-depth) for power-law distributions
- Self-tunable at query time given any threshold

Thank you!

Erkang (Eric) Zhu ekzhu@cs.toronto.edu